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Abstract

The stability and vibration characteristics of a flexible and inextensible half-loop are investigated. The loop is fixed at

two base points, which are separated by a specified distance, and is only subjected to gravity loading. If the length of the

loop is sufficiently small, the loop stands upright in a vertical plane. If the length is increased past a critical value, the

planar equilibrium shape becomes unstable and the loop droops to one side (i.e., laterally). This out-of-plane dis-

placement may occur smoothly (supercritical bifurcation), or the loop may suddenly jump to a severely-drooped

configuration (subcritical bifurcation), depending on the constitutive law. Linearly-elastic and softening materials are

considered. Prebuckled and postbuckled equilibrium states are determined numerically with the use of a shooting

method. Droop caused by an applied torsional moment is also analyzed. Then small vibrations about the prebuckled

(planar) states are studied. Three basic types of vibration modes occur: in-plane, out-of-plane (symmetric), and twist

about a vertical axis through the center of the loop. Experiments on a fiber-optic rod and a curtain wire are carried out

to qualitatively verify the numerical results for both types of constitutive laws.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The three-dimensional deflections of thin elastic rods have been studied in a number of recent papers.

Particular attention has been focused on writhing and loop formation when the rods are subjected to

tension and torsion (e.g., Goriely and Tabor, 1998; Stump and van der Heijden, 2000; van der Heijden and

Thompson, 2000; Stump et al., 2001; Gonzalez et al., 2002; Neukirch et al., 2002), sometimes with

application to DNA configurations (e.g., Charitat and Fourcade, 1998; Qian and White, 1998; Stump et al.,

1998; Manning and Maddocks, 1999; Furrer et al., 2000; Garrivier and Fourcade, 2000; Panyukov and
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Rabin, 2000, 2001, 2002; Stump, 2000; Thompson et al., 2002). These rods are often straight in their un-

strained state, and also may be circular or helical.

Iooss and Joseph (1990) described a demonstration used by T.B. Benjamin at Oxford University. It

involved a curtain wire, which had a tightly-wound steel spring as its core and an outer plastic coating. One
end of the wire was pushed upward through a hole in a horizontal board, and then was pushed downward

through another hole so the wire formed a half-loop in a vertical plane above the board. More wire was

pushed through the first hole, and when the loop attained a critical length, it suddenly drooped to one side.

This was cited by Iooss and Joseph (1990) as an example of subcritical bifurcation. Similar behavior of this

curtain wire when utilized as a cantilevered column is discussed in Acheson (1997), Fraser and Champneys

(2001), Mullin et al. (submitted for publication), and Virgin and Plaut (2004).

This type of half-loop subjected to self-weight is the subject of the present study. It is shown that the

bifurcation is supercritical if the loop is linearly-elastic, and subcritical if it has a softening behavior similar
to that of the curtain wire. This characteristic also is seen in the column problem (Fraser and Champneys,

2001; Virgin and Plaut, 2004). The analysis of the loop is more complicated due to the large two-dimen-

sional displacements occurring in the prebuckled equilibrium shapes and the large three-dimensional dis-

placements in the postbuckled configurations.

The static problem is formulated in the following section. Then the linearly-elastic case is analyzed in

Section 3. In this case the loop is an elastica: inextensible and unshearable, with bending moment pro-

portional to curvature. The dependence of the critical length (and corresponding height) on the weight per

unit length is determined. Prebuckled and postbuckled equilibrium shapes are computed using a shooting
method. A torsional moment at the supports is considered as an imperfection. In addition, the effect of

increasing such an applied moment on the equilibrium shape is examined.

In Section 4, a softening behavior is assumed, and equilibrium paths are obtained again. Vibrations

about the stable prebuckled loop are treated in Section 5. Frequencies are plotted as a function of the length

of the loop. Experiments are described in Section 6, involving both equilibrium paths and vibrations. A

fiber-optic rod and a curtain wire are used to form the loop and to respectively model the linearly-elastic

and softening behavior. Concluding remarks are given in Section 7, and an alternative formulation

involving Euler angles is presented in Appendix A.
2. Static formulation

The loop is assumed to be elastic and unstrained when straight. Shear deformation, axial deformation,
torsional deformation, and rotatory inertia are neglected. A sketch of a planar prebuckled equilibrium

shape is shown in Fig. 1a in dimensional terms. The loop is vertical at the supports, which are separated by

a distance 2B. The length of the loop is 2H and the constant weight per unit length is W . The cross section is

axi-symmetric and the bending stiffness with respect to a diameter of the cross section is EI for the linearly-

elastic case.

The arc length is S, the in-plane coordinate X is horizontal, the coordinate Y is vertical, and the

coordinate Z points out of the plane. The position vector of a point on the centerline is
RðSÞ ¼ X ðSÞiþ Y ðSÞjþ ZðSÞk ð1Þ
and the inextensibility condition is
R0 � R0 ¼ 1: ð2Þ
The force vector acting on the positive cross section at S is VðSÞ and includes the axial force as well as the

shear force, unlike the analysis in Stump et al. (2001). Equilibrium of forces provides the vector equation



Fig. 1. Geometry of loop subjected to self-weight: (a) dimensional and (b) nondimensional.
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V0 ¼ W j: ð3Þ

The bending moment vector is MðSÞ and acts normal to the cross section at S, and the torsional moment is

Q. Equilibrium of moments gives (Stump et al., 2001)
ðQR0 þMÞ0 ¼ �R0 � V: ð4Þ

The moment–curvature relationship is assumed to have the form
1

 
þ n

B
EI

� �2

M �M
!
M ¼ EIR0 � R00; ð5Þ
where n ¼ 0 for the linearly-elastic case (i.e., the elastica) as in Stump et al. (2001). For planar deflections of
the curtain wire, n ¼ 4 provides a good approximation (Virgin and Plaut, 2004).

The analysis is carried out in terms of the following nondimensional quantities:
s ¼ S
B
; x ¼ X

B
; y ¼ Y

B
; z ¼ Z

B
; h ¼ H

B
; r ¼ R

B
; w ¼ WB3

EI
; v ¼ VB2

EI
; q ¼ QB2

EI
;

m ¼ MB
EI

: ð6Þ
Some of these are shown in Fig. 1. Then the governing equations become
r0 � r0 ¼ 1;

v0 ¼ wj;

ðqr0 þmÞ0 ¼ �r0 � v;

Jm ¼ r0 � r00;

ð7Þ
where primes denote differentiation with respect to s, and
J ¼ 1þ nðm2 þ m2 þ m2Þ ð8Þ
1 2 3
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in terms of the components of m. Differentiation of the first of Eqs. (7) gives r0 � r00 ¼ 0, and then taking the

dot product of the third of Eqs. (7) with r0 and using the derivative of the fourth of Eqs. (7) to get m0 leads to

q0 ¼ 0. Hence the torsional moment q is constant, as previously shown by Stump et al. (2001). Taking the

cross product of the fourth of Eqs. (7) with r00 and using the relationship ða� bÞ � c ¼ ða � cÞb� ðb � cÞa,
one obtains
r00 ¼ Jm� r0: ð9Þ

In terms of vector components, Eq. (9) becomes
x00 ¼ Jðm2z0 � m3y 0Þ;
y00 ¼ Jðm3x0 � m1z0Þ;
z00 ¼ Jðm1y0 � m2x0Þ;

ð10Þ
and the third of Eqs. (7) can be written as
m0
1 ¼ v2z0 � v3y 0 � qx00;

m0
2 ¼ v3x0 � v1z0 � qy00;

m0
3 ¼ v1y0 � v2x0 � qz00:

ð11Þ
If p denotes the horizontal reaction shown in Fig. 1b, integration of the second of Eqs. (7) leads to the force

components
v1 ¼ �p; v2 ¼ ðs� hÞw; v3 ¼ 0: ð12Þ
3. Static analysis of linearly-elastic loop

Equilibrium shapes of the elastica loop are analyzed in this section. Planar, prebuckled equilibrium

configurations are considered first. Hence the out-of-plane displacement zðsÞ, the torsional moment q, and
the bending moment components m1ðsÞ and m2ðsÞ are 0. The governing equations become
x00 ¼ �Jm3y0;

y00 ¼ Jm3x0;

m0
3 ¼ �py 0 � ðs� hÞwx0

ð13Þ
with J ¼ 1. The boundary conditions at s ¼ 0 are x ¼ x0 ¼ y ¼ 0 and y 0 ¼ 1, and at the right support where

s ¼ 2h they are x ¼ 2, x0 ¼ y ¼ 0, and y0 ¼ �1.

The computer program Mathematica (Wolfram, 1991) is used to obtain numerical solutions with a
shooting method for all problems in this study. Eqs. (13) are written as five first-order equations in x, x0, y,
y0, and m3. The half-length h and weight w per unit length are specified. The quantities p and m3ð0Þ are

varied until two of the conditions at s ¼ 2h are satisfied with sufficient accuracy; the other two conditions

will also be satisfied by the solution.

For w ¼ 1=32, the resulting equilibrium shapes are depicted in Fig. 2a–c for h ¼ 2, 4, and 6, respectively.

The latter two shapes bulge outward near the supports. The central heights for these cases are yðhÞ ¼ 1:48,
3.34, and 5.05, respectively. The critical half-length, hcr, is 6.39.

The solid curves in Fig. 3 demonstrate how the critical half-length hcr and corresponding central height
yðhcrÞ decrease as the weight w per unit length is increased. The curves can be approximated by the rela-

tionships
hcr � 2w�1=3; yðhcrÞ � 5
3
w�1=3: ð14Þ



2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6w

and
hcr

y(hcr)

linearly-elastic
softening

hcr

y(hcr)
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Fig. 2. Prebuckling equilibrium shapes of linearly-elastic loop with w ¼ 1=32: (a) h ¼ 2, (b) h ¼ 4, and (c) h ¼ 6.
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Using (6), one can obtain Hcr � 2ðEI=W Þ1=3 and conclude that for the range shown in Fig. 3, the critical

dimensional length 2Hcr of the loop is essentially independent of the dimensional separation 2B of the

supports (see Fig. 1). This unexpected result is validated by the experimental results to be described in

Section 6.

Nonplanar equilibrium configurations are considered now. Eqs. (10) and (12) are substituted into (11),

with J ¼ 1. The resulting three equations, along with (10), are written as nine first-order equations. The

additional boundary conditions to those for the planar case are z ¼ z0 ¼ m2 ¼ 0 at the two supports (at

which locations m2 is not a bending moment component). For fixed values of h, w, and q, the quantities p,
m1ð0Þ, and m3ð0Þ are varied until three of the conditions at s ¼ 2h are satisfied. Alternatively, m1ð0Þ is fixed
and h is varied. This latter approach is applied to compute the critical height when q ¼ 0, such as plotted in

Fig. 3, with m1ð0Þ specified as a very small value. It is also useful when the equilibrium paths are almost

perpendicular to the h axis.

Equilibrium paths are plotted in Fig. 4 for the case w ¼ 1=32 and the range 4 < h < 8. The abscissa zðhÞ
is the lateral deflection of the center of the loop. For the perfect loop (q ¼ 0), which has planar prebuckling

shapes, a supercritical bifurcation point occurs at hcr ¼ 6:39. (Higher bifurcation points do not appear in

the figure.) When the half-length is increased past this point, the planar equilibrium state, with zðhÞ ¼ 0,
becomes unstable and the solid nontrivial postbuckling path is followed. The loop droops laterally to one

side in a smooth manner.
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Fig. 4. Equilibrium paths (half-length versus lateral central deflection) for linearly-elastic loop with torsional moment q ¼ 0 (perfect
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Perspectives of a planar prebuckled shape and two postbuckled configurations are presented in Fig. 5.

Fig. 6 depicts front and side views of three postbuckled shapes. In Fig. 6a and b, h ¼ 6:6. The half-length is
h ¼ 7:4 for Fig. 6c and d, and the front view exhibits two loops. In the formulation used by Stump et al.

(2001) and described in Appendix A, one of the Euler angles becomes discontinuous when this occurs, and

therefore that formulation was not adopted in the present study. Fig. 6e and f show the postbuckled shape

when h ¼ 9:4.
Dashed curves in Fig. 4 represent equilibrium paths for the imperfect case having an applied torsional

moment q ¼ 0:01. Equilibrium states are stable on the primary path on the right side of the figure, and on

the left side of the secondary path. The loop does not have a planar equilibrium configuration, and the

droop increases smoothly as the length of the loop is increased.
Now consider a given loop (i.e., the length of the loop is fixed), still with w ¼ 1=32, and suppose that a

torsional moment q is applied at the supports. In Fig. 7, the dependence of the lateral central deflection zðhÞ
on q is plotted for five different half-lengths. If h ¼ 2, 3, 4, or 5, zðhÞ increases as q is increased, within the
Fig. 5. Equilibrium shapes for prebuckled and postbuckled loop.
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range shown. However, if h ¼ 6, zðhÞ reaches a maximum value and then decreases. This latter behavior is

similar to that seen in Fig. 6b, d, and f, in which the horizontal deflection of the right end of the curve is
greater in Fig. 6d than in Fig. 6b, but smaller in Fig. 6f than in Fig. 6d.
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Fig. 7. Lateral central deflection zðhÞ versus applied torsional moment q.
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4. Static analysis of softening loop

In this section, the moment–curvature relationship is given by (5) with n ¼ 4. The governing equations

for planar and nonplanar equilibrium states are the same as in Section 3 except that J is given by (8) with
n ¼ 4.

Equilibrium paths are plotted in Fig. 8 for w ¼ 1=32 and the range 4 < h < 8. For the perfect case

(q ¼ 0), the critical height is hcr ¼ 6:22. This is lower than the corresponding value hcr ¼ 6:39 for the lin-

early-elastic loop (i.e., when n ¼ 0). For the cantilevered column treated in Virgin and Plaut (2004), the

critical height was the same for linearly-elastic and softening cases, because the prebuckled (straight)

configuration was not affected by the constitutive law. For the loop, the prebuckled shapes are not the same

for the two cases, and hence the critical heights are not the same.

When n ¼ 4, as seen in Fig. 8, the bifurcation is subcritical, with the initial postbuckling path falling. The
nontrivial equilibrium states are unstable on this falling portion, i.e., until the minimum point is reached,

and then become stable as the path rises. If the half-length h of the prebuckled loop with w ¼ 1=32 is

increased and reaches hcr, the loop jumps suddenly from the planar configuration to the severely-drooped

shape depicted in Fig. 9. This is the behavior observed in Benjamin’s demonstration (Iooss and Joseph,

1990), and is quite different from that of the linearly-elastic loop analyzed in the previous section.

On the primary imperfect path on the right side of Fig. 8 with q ¼ 0:01, a jump in the shape occurs when

the maximum (limit) point is reached. The sudden change in the amount of droop is smaller than for the

perfect loop. For this case, in which the postbuckling path falls initially but then rises, if the imperfection
were sufficiently large, the primary equilibrium path would not have any turning points and the equilibrium

shapes would change smoothly as the loading parameter is increased.

For the softening loop, the dashed curves in Fig. 3 show the effect of the weight w per unit length on the

critical half-length and corresponding central height. The values are slightly lower than those for the lin-

early-elastic loop. Again, the ordinates are approximately proportional to w�1=3, and (for given bending

stiffness EI and dimensional weight W per unit length) the dimensional critical length 2Hcr is almost

independent of the support separation 2B over the range shown in the figure.
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Fig. 8. Equilibrium paths for softening loop with torsional moment q ¼ 0 and q ¼ 0:01.
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5. Vibrations of linearly-elastic loop

Small vibrations about the planar prebuckled configurations of the linearly-elastic loop are investigated

in this section. The analysis is carried out in nondimensional terms. If x denotes the dimensional frequency

and T is dimensional time, then the corresponding nondimensional quantities are
X ¼ xB2

ffiffiffiffiffiffiffiffi
W
EIg

s
; t ¼ T

B2

ffiffiffiffiffiffiffiffi
EIg
W

r
: ð15Þ
Eqs. (10) and (11) are valid, where primes now denote partial differentiation with respect to s, and the

second of Eqs. (7) is replaced by the component equations
v01 ¼
o2x
ot2

; v02 ¼ wþ o2y
ot2

; v03 ¼
o2z
ot2

: ð16Þ
The variables xðs; tÞ, yðs; tÞ, zðs; tÞ, m1ðs; tÞ, m2ðs; tÞ, m3ðs; tÞ, v1ðs; tÞ, v2ðs; tÞ, v3ðs; tÞ, and qðtÞ are written in

terms of an equilibrium component and a dynamic component (vibration mode) having frequency X:
xðs; tÞ ¼ xeðsÞ þ xdðsÞ sinXt;
yðs; tÞ ¼ yeðsÞ þ ydðsÞ sinXt;
zðs; tÞ ¼ zeðsÞ þ zdðsÞ sinXt;
mjðs; tÞ ¼ mjeðsÞ þ mjdðsÞ sinXt ðj ¼ 1; 2; 3Þ;
vjðs; tÞ ¼ vjeðsÞ þ vjdðsÞ sinXt ðj ¼ 1; 2; 3Þ;
qðtÞ ¼ qd sinXt:

ð17Þ
The static torsional moment is 0 for the equilibrium states under consideration, as are ze, m1e, m2e, and v3e.
Eqs. (17) are substituted into (10), (11), and (16). The equilibrium components satisfy (12) and (13) with
J ¼ 1. The nonlinear terms in the dynamic components are neglected, and the coefficients of sinXt provide
the remaining governing equations. The boundary conditions on the modal quantities at s ¼ 0 and s ¼ 2h
are xd ¼ x0d ¼ yd ¼ y0d ¼ zd ¼ z0d ¼ m2d ¼ 0.

Three basic types of vibration occur. The equations involving the modal variables separate into two sets.

One set is associated with in-plane vibrations. The other set leads to the remaining two types of vibration.

One involves out-of-plane symmetric lateral vibrations, and the other involves twisting vibrations about a

vertical line through the apex of the loop. Perspectives of these forms are presented in Fig. 9, where the light

shape is the planar equilibrium configuration and the dark shape is the first mode for each of the three
types. Similar vibration behavior was described in Molloy et al. (1999) for two arch-shells that lean against

each other.
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For in-plane vibration modes, zd ¼ m1d ¼ m2d ¼ v3d ¼ 0 and the equations are
x00d ¼ �m3ey 0d � m3dy0e;

y00d ¼ m3ex0d þ m3dx0e;

m0
3d ¼ �py 0d þ v1dy0e � ðs� hÞwx0d � v2dx0e;

v01d ¼ �X2xd ;

v02 ¼ �X2yd :

ð18Þ
The dynamic torsional moment amplitude qd does not appear, since z00e ¼ 0. Eqs. (13), with subscripts e
added to the variables, and Eqs. (18) are written as a set of 12 first-order equations. Values of p and m3ð0Þ
are found from the previous equilibrium solution (Section 3). One of the three unknown conditions m3dð0Þ,
v1dð0Þ, and v2dð0Þ is given a certain (arbitrary) magnitude, and the other two are varied, along with the

frequency X, until three of the conditions at s ¼ 2h are satisfied.

Numerical results are obtained for w ¼ 1=32. The variations of the lowest two in-plane frequencies with

the half-length are shown by the dashed curves in Fig. 11. All the frequencies decrease as h increases in the

range shown (2 < h < hcr ¼ 6:39). The lowest in-plane frequency is asymmetric and has a node near the

center of the loop, as sketched in Fig. 10b. The second in-plane mode is symmetric and has two nodes.

For the other two types of vibration, the modal quantities xd , yd , m3d , v1d , and v2d are 0. The equations

involving the modal variables are
z00d ¼ m1dy 0e � m2dx0e;

m0
1d ¼ ðs� hÞwzd � v3dy0e þ qdm3ey0e;

m0
2d ¼ v3dx0e þ pz0d � qdm3ex0e;

v03d ¼ �X2zd ;

ð19Þ
where (13) with J ¼ 1 has been used to replace x00e and y00e in the last terms of the middle two equations of

(19). Eqs. (13) and (19) lead to 10 first-order equations.

One type of vibration will be called ‘‘out-of-plane’’. These mode shapes are symmetric in the front view.

One of the four shooting conditions is chosen as m1dð2hÞ ¼ �m1dð0Þ to obtain these symmetric modes. The

fundamental mode of this type is sketched in Fig. 10a and has no node (i.e., it droops to one side and then

the other as it vibrates). The lateral deflection functions zdðsÞ are similar in form to the symmetric vibration
modes of a fixed–fixed beam. The second out-of-plane mode zdðsÞ has two nodes. The solid curves in Fig. 11
Fig. 10. Fundamental modes for (a) out-of-plane, (b) in-plane, and (c) twisting vibrations.
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show how the first two out-of-plane frequencies vary with h when w ¼ 1=32. The fundamental one is the

lowest of all the frequencies and decreases to 0 at the critical height (where the corresponding vibration

mode becomes the buckling mode).

The last type of vibration will be called ‘‘twist’’. Fig. 10c depicts the fundamental mode of this type. Here
the shooting condition m1dð2hÞ ¼ m1dð0Þ is included. For small half-lengths h, the twist mode shapes zdðsÞ
are similar to the anti-symmetric modes of a fixed–fixed beam. However, as h increases, an additional node

appears near s ¼ 0 and near s ¼ 2h, so that the fundamental twist mode has three nodes and the second

twist mode has five nodes. For the case w ¼ 1=32, the dotted curves in Fig. 11 demonstrate that the fun-

damental twist frequency is higher than the fundamental out-of-plane and in-plane frequencies, and is also

higher than the second frequencies of those other types if h is sufficiently large.
6. Experiments

A brief study was conducted of a loop made of a linearly-elastic material. A single fiber-optic rod was

chosen due its flexibility and dimensions. Fig. 12 shows some typical results. In part (a) is shown the
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Fig. 12. Behavior of loop made of fiber-optic rod: (a) equilibrium paths (length versus lateral central deflection); (b) lowest frequencies

for the three types of vibration.
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horizontal (lateral) deflection of the centerpoint of the loop as the length is increased. The data points

correspond to a loop in which the separation of the base holes varies from 2.5 to 10 cm. In all these cases the

loop retains its upright (trivial) equilibrium until the length has been extended to about 40 cm. At this point

the loop begins to gradually droop to one side. This is a supercritical pitchfork bifurcation. In part (b) the
averaged results of three vibration tests (for the 5 cm hole separation) show how the lowest frequency in

each mode varied as the length of the cable was changed. The ordering of the frequencies is the same as in

the theoretical results, and an increase in frequency can also be observed as the rod enters the postbuckled

regime. However, the frequency data were not acquired to a high degree of accuracy and hence a quan-

titative comparison with theory is not appropriate.

A series of tests were conducted with the softening curtain wire. Four sets of hole separation were used:

10, 15, 20, and 25 cm. For each case the length of the cable was increased and the lateral deflection was

measured a short distance up from the base. The experimental system is shown in three stages of defor-
mation in Fig. 13. In a uniform gravitational field the loop will reach a critical value, at which it flops

suddenly to one side (unlike the linearly-elastic loop which exhibits a continuous change of out-of-plane

deformation). Fig. 14a shows the measured (equilibrium) results. In each case a sudden jump to a severely-

drooped configuration is apparent. In this case the cable length is scaled by the hole separation. Frequencies

were also measured (using a laser velocity vibrometer) and these are shown for a hole separation of 20 cm in

Fig. 14b. Frequencies became increasingly difficult to measure very close to the critical length due to the

shrinking nature of the attractive domain of initial conditions surrounding the equilibrium state. Also, since

the stiffness is decreasing, so too is the damping ratio and motion becomes increasingly sluggish (especially
for the twisting motion).
Fig. 13. Front view of loop: (a) small h, prebuckled; (b) large h, prebuckled; (c) postbuckled.

Fig. 14. Behavior of loop made of curtain wire: (a) equilibrium paths (h versus lateral deflection 5 cm above supports); (b) lowest

frequencies for the three types of vibration.
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7. Concluding remarks

This is a companion paper to Virgin and Plaut (2004), which studied the classical problem of a canti-

levered column under self-weight but included a softening material as well as a linearly-elastic material. The
bifurcation behavior at the critical height may be subcritical for a softening moment–curvature relation-

ship, leading to a sudden jump from the prebuckled state to a postbuckled configuration. This is different

from the usual postbuckling behavior of linearly-elastic columns, and was previously discussed by Fraser

and Champneys (2001).

A similar phenomenon was investigated here for a flexible loop standing upright (when sufficiently short)

above two fixed supports. The demonstration described in Iooss and Joseph (1990) exhibited a sudden jump

to a severely-drooped configuration when the length of the loop reached its critical value. The loop they

described had a softening behavior, and it was shown here that a linearly-elastic loop would have a smooth
transition from the planar shape to drooped (nonplanar) shapes.

Linearly-elastic loops and softening loops with a behavior similar to that of the curtain wire used in

the experiments were analyzed. The governing equations were formulated, critical loads were deter-

mined, prebuckled and postbuckled equilibrium configurations were obtained, an applied torsional

moment was considered, and small vibrations about prebuckled states of the linearly-elastic loop were

computed.

For the parameters considered, it was found that the critical length of the loop is almost independent of

the separation between the supports (within a large range of separations). This was a surprising result. The
critical lengths and corresponding heights of the softening loop were found to be slightly smaller than those

for the linearly-elastic loop. Three types of vibration modes were found, with a symmetric droop mode

yielding the lowest fundamental frequency.

The experiments involved loops made of a linearly-elastic fiber-optic rod and a softening curtain wire.

Four different support separations were used for each material. The prebuckling, postbuckling, and

vibration characteristics exhibited in the tests were qualitatively similar to those obtained in the analytical

and numerical work.
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Appendix A. Alternative form using Euler angles

For the linearly-elastic loop, equilibrium shapes can be obtained using the formulation in Stump et al.

(2001). It involves Euler angles / and h, and will be presented in nondimensional terms.

For planar configurations, /ðsÞ is the angle from the x axis to the loop tangent. For example,

/ð0Þ ¼ p=2, /ðhÞ ¼ 0, and /ð2hÞ ¼ �p=2 in Fig. 1b. For three-dimensional shapes, / again is measured in

the xy plane and has the same interpretation relative to the projection of the loop. The angle hðsÞ is

measured from the xy plane to the loop tangent at s. Therefore hðsÞ is identically 0 for planar shapes, and

hð0Þ ¼ hð2hÞ ¼ 0 for nonplanar shapes.
From geometrical considerations,
x0 ¼ cos h cos/; y0 ¼ cos h sin/; z0 ¼ sin h: ðA:1Þ
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The equilibrium equations in terms of / and h are
/00 cos h ¼ 2/0h0 sin h� ðs� hÞw cos/� p sin/� qh0;

h00 ¼ � ð/0Þ2 cos h
h

� ðs� hÞw sin/þ p cos/
i
sin hþ q/0 cos h:

ðA:2Þ
For planar configurations, zðsÞ ¼ hðsÞ ¼ q ¼ 0 and the governing equations reduce to
x0 ¼ cos/; y 0 ¼ sin/;

/00 ¼ �ðs� hÞw cos/� p sin/:
ðA:3Þ
For nonplanar shapes, application of the shooting method becomes difficult when loops form in the front
view (see Figs. 6c and 9a). If w ¼ 1=32, this occurs when h reaches 7.12. The angle h passes through the

value p=2, which causes the first of Eqs. (A.2) to be singular.
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